Fourier-transform infrared spectroscopic studies of dithia tetraphenylporphine

SANDEEP MISHRA, SARVPREET KAUR, S K TRIPATHI, C G MAHAJAN and G S S SAINI*

Department of Physics, Panjab University, Chandigarh 160 014 e-mail: gsssaini@pu.ac.in

MS received 10 December 2005; revised 4 April 2006

Abstract. We present here infrared absorption spectra of dithia tetraphenylporphine and its cation in the 450–1600 and 2900–3400 cm⁻¹ regions. Most of the allowed IR bands are observed in pairs due to overall D_{2h} point group symmetry of the molecule. The observed bands have been assigned to the porphyrin skeleton and phenyl ring modes. Some weak bands, which are forbidden under D_{2h} , also appear in the spectra due to the distortion of the molecule from planarity-caused by the out-of-plane positioned N and S atoms. Increased intensity of some phenyl rings towards the mean molecular plane. Contrary to the point group symmetry of cation of dithia tetraphenylporphine, certain bands are observed to be degenerate due to identical bonding arrangements in pyrrole rings of the cation.

Keywords. Infrared spectra, dithia tetraphenylporphine, dithia tetraphenylporphine cation.

1. Introduction

There is much current interest in the study of core modified porphyrins because of their interesting electronic properties and possible use as photosensitizer, catalyst and complexing agents.^{1–8} Coremodified porphyrinoid systems have been synthesized and studied to understand their electronic spectra,^{1,9} vibrational structure,¹⁰ electrochemical behaviour,¹¹ aromatic character¹² and complexing ability^{1,9} etc. Solid understanding of the structure and vibrations of the more complicated chalcogen porphyrins first requires good understanding of dithia tetraphenylporphine (S₂TPP), which is one of the simplest coremodified tetraphenylporphine (TPP) macrocycles.

Vibrational spectroscopy provides rich and unique information about the bonding arrangement in a molecule in liquid or vapour state. Vibrations of a molecule can be probed by either Raman scattering technique or infrared (IR) absorption spectroscopy, which are complementary to each other. The Raman scattering under resonance condition has been utilized extensively in the study of vibrations of porphyrin molecules. On the other hand, IR absorption data are sparsely available on certain porphyrin molecules because of the fact that their IR spectra are crowded with large number of vibrational bands. Therefore, it is not an easy task to decipher information from the IR spectra of a macromolecule like TPP. Irrespective of these difficulties/shortcomings, IR spectroscopy has been used in the study of some TPPs and their oxidized products, 13-17 since this technique is quite useful in arriving at the structure and bonding arrangements in these complexes. The S₂TPP and its dication have been studied in the past and differences between neutral and cationic species are well characterized by resonance Raman (RR) spectroscopy.^{10,18} However, for complete vibrational analysis of the molecule, study of the Raman scattering and IR absorption both would be necessary. Moreover, we have not come across any IR absorption study on S₂TPP except a brief mention of its spectrum in a limited region 1000–1150 cm^{-1.10} Therefore, in the present paper we report and analyse Fourier-transform infrared (FT-IR) spectra of S₂TPP and its chemically prepared cation.

2. Experimental

Dithia tetraphenyl porphyrine was received from Professor A L Verma as a gift and used without further purification. However, its purity was checked

^{*}For correspondence

with electronic absorption spectroscopy. H₂TPP was obtained from Sigma. Benzene and Br₂ from Qualigens Fine Chemicals, were also used without any purification. The cation of S₂TPP was prepared by adding trifluoroacetic acid or Br₂ to C₆H₆ solution of S₂TPP. For recording of IR spectra, few drops of solution of S₂TPP were put on a KBr window. Solvent was allowed to evaporate before taking the measurements in order to remove the IR absorption peaks of the solvent. Similar procedure was followed for IR measurements of cationic species. UV-visible spectra were recorded on a Hitachi 330 UV-Vis-NIR spectrophotometer. IR spectra were recorded on a Perkin-Elmer PE-Rx1 FTIR spectrophotometer. Spectral resolution of the IR spectrometer was 2 cm⁻¹ throughout the experiment.

3. Results and discussion

Figure 1 gives the structure and atom-labeling scheme of S_2 TPP. From UV-visible absorption spectroscopy, first of all the purity of S_2 TPP was checked. The observed bands (figure not shown) at 435 nm (Soret) and 512, 545, 632 and 695 nm (*Q* bands) match well with the reported values.¹⁹ The observed pattern of electronic absorption bands can be explained on the basis of overall D_{2h} molecular symmetry and structural change caused by the rotation of phenyl rings increases the interaction between porphine macrocycle and phenyl rings accompanied by much larger overlap between their *p* systems.¹⁹

Figure 1. Structure and atom labelling scheme of dithia tetraphenylporphine.

IR spectra of S_2 TPP and its dication in different wave number regions are shown in figures 2–4. Spectra of H₂TPP and its dication (H₄TPP²⁺) are also included for comparison. As can be seen from the figures, the spectra of S_2 TPP contain more IR absorp-

Figure 2. IR spectra of (a) S_2TPP ; (b) S_2TPP cation; (c) H_2TPP and (d) $H_4TPP^{2+} 2Br^-$ in the 450–1100 cm⁻¹ region.

Figure 3. IR spectra of (a) S_2TPP ; (b) S_2TPP cation; (c) H_2TPP and (d) $H_4TPP^{2+} 2Br^-$ in the 1100–1600 cm⁻¹ region.

Figure 4. IR spectra of (a) S_2TPP ; (b) S_2TPP cation; (c) H_2TPP and (d) $H_4TPP^{2+} 2Br^{-}$ in 2900–3400 cm⁻¹ region.

tion bands than the H₂TPP spectra. Moreover, intensity patterns are also different. Some bands are also shifted with respect to the corresponding bands in H₂TPP. S₂TPP has two central S atoms on diagonally opposite pyrrole rings with an overall symmetry of D_{2h} . Addition of two extra protons at two diagonally positioned N atoms results in the formation of dication of S_2 TPP, which still maintains D_{2h} symmetry. Spectra of both these molecules consist of a few intense in-plane bands of B_{2u}/B_{3u} symmetry and outof-plane bands of B_{1u} symmetry, which are allowed according to the selection rules of the D_{2h} point group. These modes carry A_{2u} (out-of-plane vibration) and E_u (in-plane vibration) symmetry label in D_{4h} point group, applicable in case of the metalloporphyrins. In S₂TPP splitting of the E_u modes into B_{2u} and B_{3u} symmetry modes can be interpreted in terms of point group symmetry of the molecule, because of the fact that there are two distinct pairs of pyrrole rings in S₂TPP. These two rings have different bond lengths and electron density. Therefore, corresponding to pyrrole ring with N atoms and S atoms, the E_u symmetry modes split into two species with different frequencies as can be seen in figures 2a and 3a. A large number of weak bands, including the symmetry forbidden ones, which become allowed due to distortions in the molecule, can also be seen in the spectra of both S₂TPP and its cation. The IR spectra contain more bands that can not be accounted for by the porphyrin skeleton. These bands might be due to overtones and combination modes. The assignment of the observed bands in the IR spectra is difficult because of its extreme complexity due to a large number of strong phenyl contributions. We have utilized a simpler, qualitative approach to interpret the IR data of S₂TPP on the basis of mode compositions of H₂TPP and NiTPP. This is a reasonable approach in this case, since the data show that the modes retain the same general character in the S₂TPP molecule as in other TPPs. Although normal coordinate calculations are not available for S₂TPP, they are available for H_2TPP ,^{16,20} free-base porphine (H_2P) ,^{21,22} nickel tetraphenylporphyrin (NiTPP)¹⁵ and free-base tetraphenylbacetriochlorin.²³ These calculations along with the reported RR studies of these complexes^{10,18} and IR study of $H_2TPP^{14,17}$ considerably simplify the assignment of the IR bands of S₂TPP. We have made suitable allowance for the difference in modes involving the two types of pyrrole rings. Changes with respect to spectra of other TPPs are also expected due to the altered masses apart from bonding effects. We expect that the mode compositions obtained in this way are reasonably accurate and that the major contributing motions are correct. The observed IR bands and their assignments are listed in table 1. Throughout this discussion, the mode numbering from refs.^{15,21,22} is used for TPP with appropriate labeling for substituted and non-substituted pyrrole rings.

3.1 Porphine skeleton modes

3.1a Low wave number region: Figure 2 shows the IR spectra of S₂TPP, H₂TPP and their cations in the wave number region 450-1100 cm⁻¹. This region is generally dominated by bands due to ring torsion, ring rotation, and in-plane and out-of-plane bending modes of the porphyrin skeleton. We observe two well-isolated bands at 553 and 565 cm⁻¹ in the spectrum of S₂TPP (figure 2a). The latter band disappears while the former shows slight upshift with concomitant increase in the width for cationic species (figure 2b). Appearance of two bands may be due to the substitution of NH atoms by S atoms. It may be mentioned here that only one band is reported for H₂TPP around this wave number, which is assigned to C_a - C_m bending motion. Disappearance of the band at 565 cm^{-1} suggests that the motion of the part of the molecule containing N atoms (with non-substituted pyrrole rings) is responsible for this band, while the

Band (cm^{-1})				Band (cm^{-1})			
S ₂ TPP neutral	S ₂ TPP cation	Mode no. ¹	Assignment ²⁻⁴	S ₂ TPP neutral	S ₂ TPP cation	Mode no. ¹	Assignment ^{2–4}
453	452	n_{33}, B_{1a}	d (Pyr rot)	1062	_	$n_{52h}, B_{2\mu}$	$d(C_k-H)_{sum}$
460, 468	464	n_{40} , B_{2u}/B_{2u}	d (Pvr rot)	1072	1072	n_{520}, B_{2u}	$d(C_b-H)_{sym}$
475	476	n_{25}, B_{1g}	d (Pyr rot)	1117	_	52a [,] 2u	s (- b / sym
485	_	237 Ig		1126	1126		
495	496		Phenyl	1136	1134		
505, 508	504		Phenyl	1151	1154	\mathbf{V}_7, A_{μ}	Phenyl
513	511	$p_5'', B_{2u}/B_{3u}$	Phenyl	1160	1154	y'_{7}, B_{1u}	Phenyl
519, 527	520		Phenyl	1176, 1193	1177	$f_{6}', B_{2u}/B_{3u}$	Phenyl
534	532	g_{13}, A_u	$g(C_a - C_m)$	1201	_		•
541	544		$\mathbf{g}(\mathbf{C}_{a}-\mathbf{C}_{m})$	1208	_		
553	556	g_7, B_{1u}	$\mathbf{g}(\mathbf{C}_a - \mathbf{C}_m)$	1223	1213	n_{51}, B_{2u}	$d(C_b-H)_{asym}$
565	_	0	$\mathbf{g}_{7}(\mathbf{C}_{a}-\mathbf{C}_{m})$	1238	_	n_{40b}, B_{2u}	n (Pyr quarter-
572	570		U				ring)
576, 582	576, 582	$g_{24}, B_{2o}/B_{3o}$	$g(C_a - C_m)$	_	1247	n_{27}, B_{1g}	\mathbf{n} (C _m -phenyl)
607	608	$n_{47b} B_{3u}$	n (Pyr breath)	1261	1261	$n_{36}, B_{2u}/B_{3u}$	n (C _m -phenyl)
618	618	110 54	Phenyl	1275	1272	V_{6}, B_{1u}	Phenyl
628	_		Phenyl	1290	_	$V_6'', B_{2u}/B_{3u}$	Phenyl
635	636	$V_{9}, B_{1\mu}$	Phenyl	1297	1297	n_{40a}, B_{3u}	n (Pyr quarter-
646	644	g_{17}, B_{1y}	$g(C_b-H)_{sym}$			1007 50	ring) _{sym}
653,661	657	$g_{25}, B_{2g}/B_{3g}$	$g(C_b-H)_{sym}$	1313	1363	n_{41b}, B_{3u}	n (Pyr half-
669	669	$f'_{9}, B_{2\mu}/B_{3\mu}$	Phenyl			-107 Ju	ring) _{sym}
679	677	$\boldsymbol{g}_1, A_{\mu}$	(Pyr fold) _{asym}	1320	1320	$V_5, B_{1''}$	Phenyl
_	686	01, "	Phenvl	1329	1328	J 57 14	Phenyl
699	699	$p_{4}''B_{2u}/B_{3u}$	Phenyl	1341	1342		Phenyl
705	699	$g_8, B_{1\mu}$	$\boldsymbol{g}(C_{h}-H)_{sym}$	1357	1363	n_{41a}, B_{2u}	n (Pyr half-
721	722	$g_{50}, B_{2a}/B_{3a}$	(Pvr fold) _{asym}			4107 20	ring) _{sum}
731	727	g_{11}, A_{ν}	(Pvr fold) _{asym}	1377	1377		C_{h} –H bend
749, 755	751	$\mathbf{p}_{3}'', B_{2u}/B_{2u}$	Phenyl	1380	1382		C_{b} -H bend
789	791	p_{15}, B_{1u}	(Pvr fold)	1387	1389		C_{k-H} bend
805	806	g_{5}, B_{1}, B_{1}	(Pyr fold) _{sym}	1400	1400		C_{k} –H bend
824	_	$B_{0,2} = 1a$ $n_{24}, B_{1,a}$	(Pvr def) _{asym}	1406	1406		C_{b} -H bend
834	834	n_{A6a}, B_{2u}	d (Pvr def) _{asym}	1421	1420		Phenyl
844	_	n_{46b}, B_{3u}	$d(Pvr def)_{asym}$ +	1425	1424		Phenyl
		40 <i>0</i> 9 - 3 <i>u</i>	Phenyl	1431	1432	$\mathbf{V}_{4}, A_{\prime\prime}$	Phenyl
865	_	n 186. B24	d (Pvr def) _{sum}	1439	1441	$\mathbf{V}_{4}, \mathbf{B}_{1}$	Phenyl
875	878	p_{3} , A_{μ}	$d (C_{h}-H)_{asym}$	1449	1449	$V''_{4}, B_{2g}/B_{3g}$	Phenyl
886	_	g_{14}, A_{μ}	\mathbf{d} (C _b -H) _{asym}	1459	1459	J_{30_2} , $B_{2\mu}$	$\mathbf{n} (C_a - C_m)_{\text{in-phase}}$
896	868	n_{48a} . B_{2u}	d (Pvr def) _{sym}	1466	1466	\mathbf{n}_3 . A_a	$\mathbf{n} (\mathbf{C}_a - \mathbf{C}_m)_{\text{in-phase}}$
906	903	$48u^{3} - 2u^{3}$	= (-)	1475	_	$n_{39h}, B_{3\mu}$	$\mathbf{n} (C_a - C_m)_{\text{in-phase}}$
912	_	$p_{2}'' B_{2u}/B_{3u}$	Phenvl	1482	1483	n_{28}, B_{1a}	$\mathbf{n} (\mathbf{C}_a - \mathbf{C}_m)_{\text{in phase}}$
921	919	1 2 2 <i>u</i> 5 <i>u</i>	Phenyl	1491	1493	$f_{5}^{207}, B_{2\mu}/B_{3\mu}$	Phenvl
929	928		Phenyl	1499	1500	-37 - 2u - 3u	, -
937	_		Phenyl	1509	1509	n_{380}, B_{2u}	$\mathbf{n} (C_{h} - C_{h})$
945	_		Phenyl	1523	1523	n_{11}, A_{a}	$n (C_b - C_b)$
952	_		Phenyl	1527	1528	n_2, A_a	$n(C_b-C_b)$
969	970	n_{47a} , B_{2u} +	d (Pvr breadth)	1534	1535	$n_{38h}^{2}, B_{3\mu}$	$\mathbf{n} (\mathbf{C}_{b} - \mathbf{C}_{b})$
		$s''_{1}, B_{2a}/B_{3a}$	+ phenvl	1542	1544	n_{37a}, B_{2u}	$n (C_a - C_w)_{\text{out of phase}}$
991	992	n_{44a}, B_{2u}	n (Pvr half-	1550	1550	n_{10}, B_{10}	$n (C_a - C_m)$
-	~ ~ -	-2u	ring)	1560	1560	n_{37h} . B_{2}	$n(C_a-C_m)_{out of nk}$
998	1001	f' 8. B2. / P2.	Phenvl	1571	1570	V_{3a}''	Phenvl
1020	1014	n_{44h} . B_{3}	n (Pyr half-	1577	1577	$V_{3h}^{"}$	Phenyl
			ring)	1591.1594	1591. 1597	$\tilde{f}'_4 + f_4$	Phenyl
1028	1028		Phenvl	_		-	· J -
1053	1050	$V_{8}, B_{1,i}$	Phenvl	_	_	_	
		J 07 - 1U	j-				

Table 1. Position and assignment of observed IR bands of S_2TPP and its cation in C_6H_6 .

(Continued on facing page)

Band (cm ⁻¹)				Band (cm^{-1})							
S ₂ TPP neutral	S ₂ TPP cation	Mode no. ¹	Assignment ^{2–4}	S ₂ TPP neutral	S ₂ TPP cation	Mode no. ¹	Assignment ^{2–4}				
3011	3014	f_{3a}''	Phenyl	3081	3080	$n_{43}, B_{2u}/B_{3u}$	\boldsymbol{n} (C _b -H) _{sym}				
3022	3022	f_{3b}''	Phenyl	3116	3117	$\mathbf{n}_{45}, B_{2u}/B_{3u}$	$\boldsymbol{n} (C_b - H)_{asym}$				
_	3054		Phenyl	-	3308		n (N–H)				

Table 1. (Continued from facing page)

¹Mode numbering and symmetry are based on ref. [22]

²Assignments are based on references [15, 21, 22]

The n, d, g denote stretching, in-plane bending and out-of-plane bending modes respectively. The subscript sym and asym represent the symmetric and asymmetric modes respectively

 ${}^{4}\boldsymbol{p}, \boldsymbol{f}$ and \boldsymbol{y} denote phenyl ring vibrations

former band is due to the substituted pyrrole rings, since on cation formation, H atoms are added to the pyrrole rings containing N atoms, thereby affecting the vibrations of only the ring with N atoms. In the spectra of S₂TPP and its cation, bands due to pyrrole fold motion can be seen at 679, 721 and 731 cm^{-1} . The lower wave number band is assigned to the g_1 mode of A_{μ} symmetry. The band due to this mode in H₄TPP²⁺ has also been reported at the same frequency.¹⁷ Assignment of this band gets support from the fact that electrochemical data reported in the literature²⁴ also indicate similarity in properties of S_2TPP and H_4TPP^{2+} . Interestingly, the band due to this mode is absent in the spectrum of H₂TPP but present in H_4TPP^{2+} , however, the reverse is true for S₂TPP and its cation with the only difference that its intensity is not completely diminished for the S₂TPP cation. Since g_1 is a symmetry-allowed vibration under D_{4h} , D_{2h} point groups and their sub groups, it should have also been present with reasonable intensity in the spectrum of cationic S₂TPP. However, its intensity is considerably reduced on cation formation. The reduction in the intensity may be explained, if we consider mixing between this mode and other modes with the same symmetry and similar eigenvectors. The mixing leads to negligible or complete cancellation of intensity of one band while the intensity of the other band increases due to phasing. This situation is similar to metallo-TPPs in which mixing of eigenvectors of n_2 and n_3 modes is responsible for reduced intensity of the RR band assigned to n_{3} .²⁵ We feel that the g_1 mode, for which C_b and C_a atoms move out of phase, may mix with the C_b -H asymmetric bending mode g_3 , which also has A_u symmetry. Due to this mixing, the intensity for the former mode is nearly cancelled due to phasing while for the latter the intensity increases. The g_3 mode is present at 875 cm^{-1} in the IR spectrum of S₂TPP cation with relatively increased intensity compared to S₂TPP.

A pair of well-resolved bands with strong intensity can be seen at 789 and 805 cm⁻¹ in the spectrum of S₂TPP (figure 2a). On cation formation, the lower wave number band almost disappears while the higher wave number band remains unchanged. These bands may be assigned to symmetric pyrrole-folding modes g_{15} and g_5 respectively with contribution from the C_b -H bending. This assignment is based on the latest DFT-based normal coordinate analysis of H_2 TPP and NiTPP.^{15,16,20} The g_5 mode is predicted to have a large out-of-plane component of dipole moment due to large in-phase out-of-plane displacement of the C_b-H atoms. Hence, the latter intense band is assigned to g_5 . A band at 799 cm⁻¹ in H₂TPP is assigned to N-H out-of-plane bending motion in a recent study.¹⁶ However, we observe a band at 805 cm^{-1} even in the IR spectrum of S₂TPP. If this band is due to N-H bending, then it should not be present in the spectrum of S₂TPP until the molecule is oxidized by addition of protons. Hence, this mode does not arise due to N-H bending in S₂TPP. Therefore, assignment of this band to g_5 mode is justified by the above discussion and is in agreement with the IR band at 794 cm⁻¹ in NiTPP assigned to g_5 mode by Rush *et al*¹⁵. A band at 824 cm⁻¹ may be assigned to asymmetric pyrrole deformation mode \boldsymbol{n}_{24} of \boldsymbol{B}_{1g} symmetry. Similarly, a doublet at 834 and 844 cm⁻ may also arise due to asymmetric pyrrole deformation motion and accordingly we have assigned them to \mathbf{n}_{46a} and \mathbf{n}_{46b} respectively of B_{2u}/B_{3u} symmetry. On cation formation, these bands can be seen at 834 cm^{-1} in the IR spectrum (figure 2b). Symmetric pyrrole deformation modes n_{48a} and n_{48b} give rise to IR bands at 865 and 896 cm⁻¹. Since these modes involve movement of N and/or S atoms, in the spectrum vibrational frequency of a band should be lower for the pyrrole rings with S atoms and, therefore, the former band is assigned to n_{48} mode with contribution from the S-substituted pyrrole rings and the latter from non-substituted pyrrole rings. On cation formation, H atoms are attached to the N atoms of the pyrrole rings. It is observed for H₂TPP that the electron density on the N atoms decreases due to dication formation.²⁶ If we assume a similar situation for S₂TPP, then the latter band should shift downward for cationic S₂TPP, while the former may show either no shift or very small shift in its position. Based on this argument, we assign a band (shoulder) at 868 cm⁻¹ to symmetric pyrrole deformation mode n_{48} for S₂TPP cations.

We may assign bands at 969 and 607 cm^{-1} to pyrrole breathing modes \mathbf{n}_{47a} (B_{2u}) and \mathbf{n}_{47b} (B_{3u}) respectively. Stein *et al*⁹ have assigned a band at 630 cm^{-1} in the RR spectra of S_2 TPP to C_a -S stretching, which arises due to pyrrole breathing stretching mode \mathbf{n}_{6} . Corresponding IR active band involving pyrrole breathing mode is n_{47} . It is observed in X-ray structure analysis¹⁹ and molecular orbital calculations²⁷ that replacement of NH groups by S atoms drains electron density from the porphyrin ring and also S atoms are known to take part in direct bonding interactions within the porphyrin core. NMR studies also show changes in the inner and outer aromatic pathways of the core due to bonding interaction between S atoms and the ring.²⁸ Since S atoms change the inner ring aromaticity more than the outer pathway, bonding between the inner bonds is affected more than the bonds at the outer periphery of the ring. One, therefore, expects that the vibrational frequencies of the molecule involving the inner atoms such as C_a will change more than the frequencies of the vibration related to C_b atoms. We, therefore, assign 607 cm⁻¹ band to \boldsymbol{n}_{47b} mode involving contribution from C_a-S. Moreover, on cation formation, there should not be any apparent change in C_a-S stretching frequency as protons are attached to N atoms. In the spectrum of S_2 TPP cation (figure 2b), position of 607 cm^{-1} is changed by only 1 cm^{-1} . Therefore, small change in the wave number of the band due to cation formation also justifies the assignment of this band. As can be seen from figure 2a and b, intensity of this band decreases on cation formation, which indicates change in the molecular symmetry due to change in planarity of the molecule. The pair of bands at 991 and 1020 cm⁻¹ may be assigned to asymmetric pyrrole half-ring stretching vibrational modes $n_{44a,b}$. These bands shift to 1014 cm⁻¹ for cationic species. The doublet at 1062 and 1072 cm⁻¹ may be assigned to $n_{52a,b}$ modes of B_{2u}/B_{3u} symmetry due to in-plane C_b-H symmetric bending vibration. These bands are observed at 1072 cm⁻¹ in the spectra of the cationic species.

3.2b Mid-wave number region: In the wave number region 1100–1600 cm⁻¹, generally, bands associated with the symmetric and asymmetric C_a-C_m , C_b-C_b , pyrrole quarter-ring and pyrrole symmetric and asymmetric half-ring stretching modes are observed. In the IR spectrum of S_2 TPP (figure 3a), only one band is observed around 1223 cm⁻¹ in comparison with the doublet observed at 1214 and 1219 cm^{-1} for H₂TPP (figure 3c). The 1223 cm⁻¹ band may be assigned to asymmetric in-plane C_b-H bending vibrational mode n_{51} . The other band at low wave number is absent in the S_2 TPP spectrum. The lower wave number band in H₂TPP is assigned to N-H bending motion. This observation is consistent with the fact that the S_2 TPP molecule does not have an NH group. Accordingly, we observe only a single band at 1223 cm^{-1} , which shifts down to 1213 cm⁻¹ for cationic S₂TPP. This shift is in agreement with the shift in other C_b -H related vibrations. The downshift can be explained on the basis of reduced electron density on C_b and H atoms attached to C_b as seen in H_4TPP^{2+} from NMR spectroscopy by Inisan *et al*²⁶. The C_m -phenyl vibrational mode, n_{36} , remains at its position on cation formation and is observed at 1261 cm⁻¹ in the spectra of both S₂TPP and its cation. IR bands at 1298 and 1238 cm⁻¹ may be assigned to \boldsymbol{n}_{40a} and \boldsymbol{n}_{40b} modes respectively. The local coordinate giving rise to these bands is the pyrrole quarter ring stretching vibration. The calculated position of doubly degenerate \mathbf{n}_{40} mode by Rush *et al*¹⁵ is 1312 cm⁻¹ for NiTPP using DFT technique. However, by empirical normal coordinate analysis method, its positions are calculated at 1408 cm⁻¹ (\mathbf{n}_{40a}) and 1402 cm⁻¹ (\mathbf{n}_{40b}) for free-base porphine²² and at 1382 cm⁻¹ (\mathbf{n}_{40a}) and 1227 cm^{-1} (\mathbf{n}_{40b}) for free-base tetraphenylbacteriochlorin.²³ Porphyrin ring-related stretching vibrations in S₂TPP show downshift with respect to the corresponding bands in H₂TPP.¹⁰ We have, therefore, assigned the 1297 and 1238 cm⁻¹ bands to $\mathbf{n}_{40a.b}$ modes due to quarter-ring stretching of substituted and non-substituted pyrrole respectively. Pyrrole quarter-ring stretching motion is coupled to C_b-H bending according to DFT calculation of porphine by Kozlowski *et al*²¹. These authors have calculated

bands at 1252 cm⁻¹ of B_{2u} symmetry due to C_b-H deformation with C_a -N and C_a -C_b stretching and at 1408 cm⁻¹ of B_{3u} symmetry due to C_a-N and C_a-C_b stretching. Also in a recent IR study of H₂TPP, a band at 1249 cm⁻¹ has been assigned to C_a -N stretching mode.¹⁴ This further justifies assignment of 1297 and 1238 cm⁻¹ bands to $n_{40a,b}$ modes. In S_2 TPP cation only a single band at 1297 cm⁻¹ is observed corresponding to these bands. A weak band at 1247 cm⁻¹ is also assigned to forbidden IR mode n_{27} . Symmetric pyrrole half-ring stretching modes \mathbf{n}_{41b} (B_{3u}) and \mathbf{n}_{41a} (B_{2u}) are observed at 1313 and 1357 cm⁻¹ for non-substituted and substituted pyrrole rings respectively in the IR spectrum of neutral compound (figure 3a). These bands shift to new position at 1363 cm⁻¹ in cation spectrum. However, observation of weak bands at 1357 cm⁻¹ in figure 3b shows the presence of small amount, of non-oxidized S₂TPP. As can be seen from the IR spectra of oxidized S₂TPP, all the molecules are not converted to cationic form, since some bands at 1357 cm⁻¹ and between 1500 and 1600 cm⁻¹ can still be seen at the positions of the neutral species with non-zero intensity. It suggests that dithia porphyrins are difficult to oxidize compared to free-base porphyrins. In fact, from the electrochemical studies of S₂TPP, it was found that the oxidation potential of this molecule is more positive compared to H₂TPP.²⁴ The symmetric pyrrole half-ring stretching mode can be described by the out-of-plane C_a -N/ C_a -S and C_a - C_b stretching in opposite pyrrole rings. The out-of-phase stretching motion of Ca-S and Ca-Cb also leads to marked change in the C_a - C_m - C_a angle. This in turn causes rather large amplitude in the motion of the C_m -phenyl bond. Hence, the intensity of the band assigned to C_m -phenyl in S₂TPP is more than the intensity of the corresponding band in H₂TPP. Bands at 1377, 1411 cm⁻¹ and other bands within these wave number position may be assigned to C-H bending of the porphyrin ring in accordance with recently reported studies.²⁰

Bands in the wave number region beyond 1450 cm⁻¹ arise mainly due to C_a-C_m , C_b-C_b and phenyl ring stretching vibrations. Doublets at 1459 and 1475 cm⁻¹ bands in S₂TPP may be assigned to $\mathbf{n}_{39a,b}$ modes having in-phase C_a-C_m motion. Weak intensity bands at 1466 and 1482 cm⁻¹ bands may be assigned to forbidden modes \mathbf{n}_3 (A_g) and \mathbf{n}_{28} (B_{1g}) modes respectively. These modes also involve in-phase motion of the C_a-C_m vibration. Other bands, which may also be assigned to C_a-C_m vibrational modes $\mathbf{n}_{37a,b}$ (B_{2u}/B_{3u}) and forbidden \mathbf{n}_{19} (B_{1g}), are observed at 1542, 1560 and 1550 cm⁻¹ respectively. In metalloporphyrins with D_{4h} symmetry, the C_a-C_m modes are grouped into two categories according to whether they are symmetric or asymmetric with respect to the $C_{2'}$ axis passing through the opposite *meso* carbon atoms. In S_2 TPP and its cation as well as H₂TPP, the $C_{2'}$ axis is lost due to redution of the molecular symmetry to D_{2h} . Therefore, according to Li and Zgierski,²² it is more appropriate to use in-phase and out-of-phase combination of the two adjacent C_a - C_m stretching instead of symmetric and asymmetric respectively to describe these modes. In the spectrum of S₂TPP, bands due to C_{h} - C_{h} stretching have been observed at 1509, 1534 and 1523 and 1527 cm⁻¹ and assigned to $\boldsymbol{n}_{38a,b}$ (B_{2u}/B_{3u}) , \boldsymbol{n}_{11} (A_g) and \boldsymbol{n}_2 (A_g) modes respectively. Of these modes, the latter two are forbidden under D_{2h} symmetry. As can be seen from Figures 2-4, intensity patterns and vibrational frequencies of different IR bands in the spectra of S₂TPP are quite similar to the spectra of the dication of H_2 TPP. Similarity in the spectra may be due to the similarity between their structures, although they belong to different point groups. The point group symmetry of H_4TPP^{2+} is S₄. Both are known to have considerable nonplanarity.^{19,24} According to the X-ray measurements,¹⁹ the S atoms are displaced out of the porphyrin plane by 0.09 and the N atoms by 0.24 in S $_2$ TPP. Nonplanarity is, therefore, responsible for the appearance of the bands which are otherwise forbidden under ideal D_{2h} symmetry. The effective symmetry of this molecule in reality may be taken as $C_{2\nu}$, which is less than the assumed symmetry D_{2h} .

3.1c High wave number region: The N-H stretching bands observed at 3316 and 3310 cm^{-1} in H₂TPP and its dication respectively (figure 4) are no longer seen in the spectrum of S_2 TPP. This observation is in complete agreement with the structure of the molecule, which does not have an N-H bond. Dications of S₂TPP, prepared by adding trifluoroacetic acid to the solution, have shown this band at 3308 cm⁻¹ with reduced intensity. Similar observations, have been made in case of H₂TPP. However, the number of N-H bonds are just half in the cation of S₂TPP compared to H_4TPP^{2+} . Therefore, intensity of the band in the former compound is still weaker than in the latter. Reduction of the intensity on dication formation also indicates that the derivative of the transition dipole moment with respect to N-H stretching mode also becomes very small. Other bands observed in the

higher wave number region are due to the stretching vibrational motion of C_b -H bond of the porphyrin ring and C-H stretching of phenyl rings. Spectrum of S₂TPP shows bands due to C_b -H stretching modes at 3081 and 3116 cm⁻¹ with shoulders and other weak bands. It seems that the above bands correspond to 3108 and 3134 cm⁻¹ bands of H₂TPP (figure 4a,c). The downshift in the wave numbers of these bands for S₂TPP compared to H₂TPP indicates the weakening of C_b -H bonds of the former compound. This observation gets support from earlier reported work on this molecule.²⁴

3.2 Phenyl ring modes

A number of phenyl ring modes are observed in the IR spectra of S_2 TPP, similar to H_2 TPP. Modes internal to the phenyl rings are expected to occur at essentially the same frequencies as in other TPPs. Although steric hindrance between the ortho hydrogen atoms of the phenyl groups and the adjacent pyrrole rings opposes the rotation of phenyl group in the porphyrin plane in ground state, yet most phenyl ring modes are mixed with porphyrin ring modes through the phasing of their eigenvectors.

The band at 669 cm^{-1} does not show any change in its position and intensity on cation formation. Hence, this band may be assigned to the in-plane phenyl ring vibrational mode f'_9 . Other bands, which may arise due to phenyl ring stretching are observed at 749 and 755 cm⁻¹ and can be assigned to $p''_{3a,b}$ modes respectively. In the spectrum of cationic species only one band is seen at 751 cm⁻¹ corresponding to $p''_{3a,b}$. The 844 cm⁻¹ band may have contribution from the phenyl ring according to Zhang et al^{16} , therefore, this band is also assigned to phenyl ring vibration. A number of weak bands at 912, 952 cm⁻¹ and between these wave number positions may also be assigned to phenyl ring vibrations. The 1151 and 1160 cm⁻¹ bands are due to out-of-plane phenyl ring vibrational modes \mathbf{y}_7 and $\mathbf{y}_{7'}$ of A_u and B_{1u} symmetry respectively. These are seen at 1154 cm^{-1} for dication. Bands at 1431, 1439 and 1449 cm^{-1} may be assigned to phenyl ring modes y_4 (A_u), y'_4 (B_{1u}) and $\mathbf{y}_{4}^{\prime\prime}$ (B_{2g}/B_{3g}) respectively. These bands also do not show any shift on cation formation. As can be seen, IR bands related to phenyl rings are more intense in S₂TPP spectra than in H₂TPP. This indicates orientational change of the phenyl rings with respect to the porphyrin plane in the former molecule in comparison with the latter. Orientational change is a result of the structural change caused by the presence of the S atoms as discussed above. X-ray and electronic absorption spectroscopy¹⁹ also suggest rotation of phenyl rings in S₂TPP towards the mean porphyrin plane, which is accompanied by much larger overlap between their **p** systems.

As mentioned above, the E_u symmetry modes in the spectra of S_2 TPP split into B_{2u} and B_{3u} species due to its point group symmetry D_{2h} similar to H₂TPP. However, contrary to its point group symmetry, certain porphyrin ring as well as phenyl ring related bands in the spectra of S₂TPP cation are degenerate as in H_4TPP^{2+} . There is one fundamental difference in the degeneracy of these bands in these molecules. In H₂TPP, the symmetry of the molecule increases from two-fold to four-fold (S₄) due to addition of protons at the N atoms of the deprotonated pyrrole rings on cation formation. Thus in case of H_4TPP^{2+} , not only is the point group symmetry of the molecule increased but the pyrrole rings are also similar to each other in every respect as far as bonding arrangements and force constants are concerned. Similar to H_4TPP^{2+} , two protons attach to N atoms of non-substituted pyrrole rings on formation of S₂TPP cation. Thus, effective point group symmetry of the molecule is still two-fold even after addition of two protons. Therefore, the degeneracy of IR bands cannot be explained only on the basis of point group symmetry. In H_4TPP^{2+} , extra protons attached to the N atoms of pyrrole rings reduce electron density on the pyrrole rings.²⁶ Addition of protons in case of S₂TPP may also have similar effect on the electron density on pyrrole rings. We can, therefore, assume that the electron density on the pyrrole rings with N atoms is reduced on oxidation (protonation). On the other hand, electron density on the substituted pyrrole rings is already reduced by the S atoms. Thus, the net effect of the protonation of the molecule is the reduction of electron density on the nonsubstituted pyrrole rings to an extent that it becomes nearly equal to the electron density on the substituted pyrrole rings, thereby making the two types of pyrrole ring equivalent in terms of electron density, bond order and force constants. Hence, some of the vibrations are accidently degenerate in the spectra of S₂TPP cation, contrary to the point group symmetry.

In the high wave number region, some bands can be identified with the phenyl ring vibrations. Bands at 3011 and 3022 cm⁻¹ either remain at their respective positions or change their position by a few wave numbers with reduced intensity for cations. On the other hand, phenyl C–H stretching band at 3054 cm^{-1} , which does not have detectable intensity for neutral species, gains intensity in the cation spectrum (figure 4b). These observations indicate that the bonding arrangements in phenyl rings of S₂TPP and its cation are almost identical, but orientation is different as already mentioned above.

4. Conclusions

From the above discussion, it is clear that the observed IR bands of S_2 TPP can be assigned, in general, on the basis of overall D_{2h} symmetry of the molecule. Reduction in symmetry, due to small outof-plane displacement of N and S atoms is responsible for non-zero intensity of forbidden bands under D_{2h} point group. Further from the analysis of the spectra of S_2 TPP cation, it can be concluded that two types of pyrrole rings in cationic species are identical in bonding arragements.

Acknowledgment

We thank Professor A L Verma of the North Eastern Hill University, Shillong for providing us the dithia tetraphenylporphine. Spectra were recorded at the Regional Sophisticated Instrumentation Centre, Panjab University, Chandigarh. S K thanks the Council of Scientific and Industrial Research (CSIR) for a fellowship SRA. Financial assistance from CSIR is gratefully acknowledged.

References

- 1. Misra R, Anand V G, Rath H and Chandrashekar T K 2005 J. Chem. Sci. 117 99
- 2. Gupta I and Ravikanth M 2005 J. Chem. Sci. 117 161
- 3. Punnagai M, Joseph S and Sastry G N 2004 J. Chem.. Sci. 116 271
- Parmeswaran D, Pushpan S K, Srinivasan A, Kumar M R, Chandrashekaran T K and Ganesan S 2003 *Photochem. Photobiol.* 78 487
- 5. Srinivasan A, Kumar M R, Pandian R P, Mahajan S, Pushpan K S, Sridevi B, Narayanan S J and Chandra-

shekar T K 1999 J. Porphyrins Phthalocyanines 2 305

- 6. Gupta I, Hung C-H and Ravikanth M 2003 *Eur. J.* Org. Chem. **2003** 4392
- Agarwal N, Hung C-H and Ravikanth M 2003 Eur. J. Org. Chem. 2003 3730
- 8. Santra S, Kumaresan D, Agarwal N and Ravikanth M 2003 *Tetrahedron* **59** 2353
- 9. Stein P, Ulman A and Spiro 1984 J. Phys. Chem. 88 369
- Pandian R P, Reddy D, Chidambaram N and Chandrashekar T K 1990 Proc. Indian Acad. Sci. Chem. Sci. 102 307
- Vogel E, Rohrig P, Sicken M, Knipp B, Harrmann A, Pohl M, Schinickler H and Lex J 1989 Angew. Chem 28 1651
- Grazynski L L, Lisowski L, Olmstead M M and Balch A L 1989 *Inorg. Chem.* 28 1183
- 13. Hu S and Spiro T G 1993 J. Am. Chem. Soc. 115 12029
- 14. Zhang Y-H, Chen D-M, He T and Liu F-C 2003 Spectrochim. Acta A59 87
- Rush III T S, Kozlowski P M, Piffat C A, Kumble R, Zgierski M Z and Spiro T G 2000 J. Phys. Chem. B104 5020
- Zhang Y-H, Ruan W-J, Li Z-Y, Wu Y and Zheng J-Y 2005 Chem. Phys. 315 201
- 17. Saini G S S, Sharma S, Kaur S, Tripathi S K and Mahajan C G 2005 Spectrochim. Acta A61 3070
- 18. Pandian R P, Chandrashekar T K, Saini G S S and Verma A L 1993 J. Chem. Soc. Faraday Trans. **89** 677
- Ulman A and Manassen J 1975 J. Am. Chem. Soc. 97 6540
- Bour P, Zaruba K, Urbanova M, Setnicka V, Matejka P, Fiedler Z, Kral V and Volka K 2000 *Chirality* 12 191
- 21. Kozlowski P M, Jarzecki A A, Pulay P, Li X-Y and Zgierski M Z 1996 J. Phys. Chem. 100 13985
- 22. Li X-Y and Zgierski M Z 1991 J. Phys. Chem. 95 4268
- 23. Lin C-Y and Spiro T G 1997 J. Phys. Chem. 101 472
- 24. Ulman A, Manassen J, Frolow F and Rabinovich D 1981 Inorg. Chem. 20 1987
- 25. Li X-Y, Czernuszewicz R S, Kincaid J R, Su Y O and Spiro T G 1990 J. Phys. Chem. 94 31
- Inisan C, Saillard J Y, Guilard R, Tabard A and Mest Y L 1998 New J. Chem. 823
- 27. Hill R, Gouterman M and Ulman A 1982 Inorg. Chem. 21 1450
- 28. Ulman A, Manassen J, Frolow F and Rabinovich D 1979 J. Am. Chem. Soc. 101 7055
- 29. Stone A and Fleischer E B 1968 J. Am. Chem. Soc. 90 2735.